Ordering Specifications

Covering Area (Yield) and Weight per Square Foot

Aluminum Sheet and Foil Gauges

Decimal	Pounds Per Square	Square Feet Per	Desimal Thiskness	Pounds Per Square	Square Feet Per Pound
Thickness	Foot	Pound	Decimal Thickness	Foot	
.002	.028	35.6	.025	.352	2.85
.003	.042	23.75	.026	.364	2.74
.004	.056	17.8	.027	.379	2.64
.005	.070	14.25	.028	.392	2.55
.006	.084	11.9	.030	.422	2.38
.007	.099	10.1	.031	.435	2.30
.008	.012	8.9	.032	.450	2.23
.009	.127	7.9	.034	.478	2.09
.010	.141	7.1	.036	.505	1.98
.011	.154	6.5	.038	.533	1.88
.012	.169	5.95	.040	.563	1.78
.013	.184	5.43	.042	.590	1.69
.014	.197	5.1	.044	.617	1.62
.015	.210	4.77	.045	.631	1.59
.016	.224	4.45	.046	.645	1.55
.018	.253	3.95	.047	.660	1.52
.019	.268	3.74	.048	.674	1.48
.020	.282	3.55	.050	.704	1.42
.022	.309	3.24	.051	.719	1.39
.023	.322	3.11	.056	.785	1.27
.024	.339	2.95	.063	.889	1.125

sed on a density of .09/6 pounds per

Alloys suitable for anodizing

99.99		Pure Al in sheet, plate or extrusion	Gives highest reflectivity since oxidized surface is free of Si, Fe and Mn which normally obscure polished surface. Easily formable, but low in strength, and expensive. Used primarily for simulated gold finish. Super- purity Al-Mg and Al-Mg-Si alloys give the same brightness; cost is still high, but strength is much improved because of Mg additions.	
5005 5252 5257	5357 5457 5557 5657	Al-Mg alloy in sheet form	Reflectivity is below that of high-purity Al-Mg alloys, but they respond well to anodizing, have good mechanical properties, and are priced for commercial applications like automotive, appliance, and architectural trim. Alloying constituents do not tint coatings.	
6063		Extrusion Alloys	These heat-treatable alloys combine high strength and good response to anodizing. Contain Mg and Si as MgSi. Heat treatment dissolves silicide, improving strength and luster after anodizing. Presence of Si can give coating a gray or brown tint. Alloy 5005 has some Mg for moderate strengthening.	
1100		Sheet and plate	Alloy 1100 is commercially pure Al, but has some Si and Fe which diminish reflectivity under anodized coating. Presence of Si can give coating a gray or brown tint. Alloy 5005 has some for moderate strengthening.	
3003		Al-Mn alloy in sheet or plate	This commercial alloy has excellent formability and, though widely used for anodic finishing, has less reflectivity than 1100 or 5005 after anodizing because of Mn and lower Al purity. Since MnO is brown, thick anodized films on this alloy have a brownish tint.	
5052		Al-Mg alloy in sheet or plate	Structural alloy containing Cr as well as Mg, widely used for welded parts. Presence of Cr gives thicker anodic coatings a yellowish tint.	
6061 2014	2024 7075	Extrusion, sheet and plate	Heat-treatable, these alloys rank after 5052 in reflectivity because Al purity is lower. Cr in 6061 and 7075 gives thicker anodic coatings a yellowish tint.	
Reprinted from Product Engineering				